ASHRAE Region VI CRC Track III: Session 2 Outdoor Air Control and Demand Controlled Ventilation

Steven T. Taylor, PE **Principal** Taylor Engineering

This program is registered with the AIA/CES for continuing professional education.

As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product. Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

- Grasp the fundamentals of indoor carbon dioxide generation and measurement
- Recognize different ways to save energy through demand controlled ventilation
- Understand the principles of outdoor air measurement and control

□ CO₂ Demand controlled ventilation

- □ CO₂ Fundamentals
- Single zone systems
- Multiple zone systems
- Outdoor airflow measurement
 - Technology
 - VAV Systems

- CO₂ DCV: CO₂ sensors can be used to reduce the building component of outside air rates during partial occupancy
 - \square CO₂ is an indicator of bioeffluent concentration
- Purpose is to save energy, NOT to improve indoor air quality
 - IAQ is actually worse since airflow rates are always less than design except at peak occupancy

- 6.4.3.8. Demand Control Ventilation (DCV) is required for spaces larger than 500 ft² and with a design occupancy for ventilation of greater than 40 people per 1000 ft² of floor area and served by systems with one or more of the following:
 - □ an air-side economizer
 - a automatic modulating control of the outdoor air damper, or
 - □ a design outdoor airflow greater than 3000 CFM

□ Exceptions to 6.4.3.8:

- □ Systems with energy recovery complying with 6.5.6.1.
- Multiple-zone systems without direct-digital control of individual zones communicating with a central control panel.
- □ System with a design outdoor airflow less than 1,200 CFM
- Spaces where the supply air flow rate minus any make up or outgoing transfer air requirement is less than 1,200 CFM

Energy Savings

Office Builling 10% to 40% Reluction In Ventilation

Schol/MætingRoom: 10% to 70% Reduction In Ventilation

Restaurant/Bar 30% to 60% Reduction In Ventilation

Types of CO₂ Sensors

CO₂ DCV using 62.1

Steady-state CO₂ Concentration

Occupancy Category	Activity Level	Steady State CO ₂ Concentration
Classrooms (age 9 plus)	1.0 met	1025 ppm
Restaurant Dining Rooms	1.4 met	1570 ppm
Conference/Meeting	1.0 met	1755 ppm
Lobbies/Prefunction	1.5 met	1725 ppm
Office Space	1.2 met	990 ppm
Sales	1.5 met	1210 ppm

- Since building is probably NOT at steady-state, CO₂ concentration cannot be used to determine number of occupants or their pollutant source strength or the actual cfm/person
- However, CO₂ concentration still tracks bioeffluent concentration and it is bioeffluent concentration you are trying to control
- Cfm/person rates were determined based on steady-state chamber studies
- Conclusion: Steady-state equation can be used to determine CO₂ setpoint and actual CO₂ concentration can be used to control actual ventilation rate

- □ Calculate the Vot at design occupancy
- Using the same equations, calculate the outdoor air rate with no occupants (Vat)
- Determine the steady-state CO₂ concentration (CO2max)
- □ Provide a CO₂ sensor/controller adjusted to send
 - □ Maximum output signal when room CO₂ is at CO2max
 - **\square** Minimum output signal when room CO₂ is ambient (400 ppm)
- Adjust outdoor air damper so that
 - □ At maximum output signal, outdoor air rate = Vot
 - □ At minimum output signal, outdoor air rate = Vat

Application Issues

Sensor location

- □ In the space at "breathing level"
- Not in return air duct since leakage and short-circuiting can skew signal

DCV in multiple zone systems

- □ Cannot use a single return air CO₂ sensor
- All densely occupied spaces must get CO₂ sensors
- Optimum control strategy for VAV systems may vary by system and climate

CO₂ DCV with VAV Systems

- 1) Increase Zone airflow and reheat? \mathbf{v}
- 2) Increase minimum system OSA and cooling (or heating) load?

Increasing the VAV Box Minimum Airflow Setpoint

- Increases simultaneous heat/cool at zone and slightly increases fan energy
- Works only if other spaces are overventilated (diluted recirculated air) but that is likely

Increasing the OSA Minimum Position

- If the OAT is below cooling set point this will increase the heating energy
- If the OAT is above the cooling set point this will increase the cooling energy
- Non-critical zones are over-ventilated

Probably Best Bet (See 62.1 User's Manual)

- Increase the zone damper up to 100% of zone maximum then stage the OA damper open from unoccupied minimum to design OA minimum
- Appears to be ideal for systems with outdoor air economizers; study is not complete

Outdoor Airflow Measurement & Control

Why are OA intake measurements challenging?

- Low air speeds, near detection limits of many sensors
 - Especially at minimum rates of OA supply
- Spatially variable (nonuniform) direction of air flow
- Limited space
- Air flow rates & temperatures vary over time
- Sensors may be exposed to moisture and dust
- Effects of winds

Outdoor Air Intake on VAV Systems

Lab and Field Tests

□ Fisk et al (LBNL 2004, 2005)

- Measured performance of 5 measurement technologies in lab and a few in the field
- Unfortunately only tested a few products many more available but untested

□ ASHRAE RP-980

- Theoretical review and lab tests of several common airflow measurement concepts
- May be the only two unbiased tests (not performed by manufacturers)

Fixed Minimum OA Damper Position

Most Common Approach

RP980 Lab Results Fixed Minimum OA Damper

Mitigation: determine multiple minimum positions at varying flow (e.g. full flow, minimum flow) so minimum damper position varies with supply airflow/speed

Energy (or CO₂) Balance

%OA = (MAT - RAT) / (OAT - RAT)

CFM-OA = %OA * CFM-SA

Return Fan Tracking

RP 980 Return Fan Tracking Predicted Error

Air Flow Measurement of 100% OA

Typical Pitot Array

VP Grid in Special Louver

Other Systems: Minimum 300-400 fpm

Thermal Dispersion Anemometer

Manufacturer: ±2% of reading over 0 to 5000 fpm range!

Fisk Tests of Thermal Dispersion Anemometer

Thermal Dispersion Anemometer in Real Application

Another Thermal Anemometer Option? Not yet tested

Can be calibrated to be accurate at 40 fpm per manufacturer

Influence of Wind Speed

Influence of Wind Direction

Injection Fan

Dedicated Minimum Outdoor Air Section

Fixed Minimum OA Damper w/ Plenum Pressure Control

Summary

Option	Advantages	Disadvantages
Minimum position reset by fan speed	 Least expensive Available on some packaged VAV systems as standard No additional AHU length required 	 Inaccurate (may not meet code) No compensation for wind and other effects Field calibration required Does not work well with CO₂ DCV
100% Outdoor Air AFMS with thermal anemometer	 Total outdoor airflow rate always known Can be used for CO₂ DCV Does not require return air damper pressure control 	 Questionable accuracy of anemometer Expensive Requires extra AHU length
Injection Fan and dedicated minimum AFMS	•Does not require return air damper control	Most expensiveRequires extra AHU length
Dedicated minimum AFMS	•Can be used for CO ₂ DCV	 Requires extra AHU length Requires return air damper control
Plenum pressure control	 Very inexpensive No additional AHU length required 	 Field calibration required Does not work well with CO₂ DCV Requires return air damper control for best efficiency

Demand controlled ventilation

- Required by Standard 90.1 for dense occupancies
- Different equations now for Standard 62.1-2004 rates
- Sequences for central VAV systems not yet optimized

Outdoor airflow measurement

- Required by Standard 62.1 and code for VAV systems
- Not all airflow measurement systems work!

Steven Taylor Taylor Engineering 510.263.1540 <u>staylor@taylor-engineering.com</u> http://www.taylor-engineering.com