The Energy Design Process for High Performance Buildings

Richard B. Hayter
ASHRAE Presidential Member
This program is registered with the AIA/CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product. Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.
Learning Objectives

• Understand a key component of a high performance building, the occupant.

• Recognize the importance of an all-inclusive design team.

• View the building as a system.

• Learn a process for designing a high performance building.
A new roadmap adopted by ASHRAE will help members lead the march toward a sustainable built environment through use of advanced technologies.

Read Roadmap Here »
The Tax Incentives Assistance Project (TIAP), sponsored by a coalition of public interest nonprofit groups, government agencies, and other organizations in the energy efficiency field, is designed to give consumers and businesses information they need to make use of the federal income tax incentives for energy efficient products and technologies passed by Congress as part of the Energy Policy Act of 2005.

- New - Frequently Asked Questions
- New - Updated Information on Vehicle Incentives
Tax Incentives

TIAP Business Incentives

What is the tax incentive for commercial buildings?

A tax deduction of up to $1.80 per square foot is available to owners or tenants (or designers, in the case of government-owned buildings) of new or existing commercial buildings that are constructed or reconstructed to save at least 50% of the heating, cooling, water heating, and interior lighting energy cost of a building that meets ASHRAE Standard 90.1-2001. Partial deductions of up to $.60 per square foot can be taken for comparable reductions from any one of three building systems—the building envelope, lighting, or heating and cooling system—that meets goals consistent with achieving the 50% savings for the entire building. An interim system-specific goal for lighting is provided directly in the legislation and is valid until and unless the IRS issues a different final regulation. The interim lighting provision allows prorated deductions from 30 cents to 60 cents per square foot for lighting systems as described below.

These deductions are available for buildings or systems placed in service from January 1, 2006, through December 31, 2007.

Who is eligible for the incentives?

The person or organization that makes the expenditures for construction is generally the recipient of the allowed tax deductions. This is usually the building owner, but for some HVAC or lighting efficiency projects, it could be the tenant. For government-owned buildings, the deduction may be taken by the building or system designer.
“No sensible decision can be made any longer without taking into account not only the world as it is but the world as it will be.”

Issac Asimov
“Design and build buildings that do not deplete the earth’s natural resources nor harm global environment or jeopardize the ability of future generations to meet their needs.”

Don Holte,
ASHRAE President 1996-97
The ASHRAE Promise: A Sustainable Future

Terry Townsend,
ASHRAE President 2006-2007
The Future World

- A world population of 6B, increasing to perhaps 10B by 2050
- Rising expectations of developing countries
- Escalating demand on (finite) resources
- Political and economic instability
- Preservation of environment

Jim Schultz
Influences on HVAC&R Applications

If every centrifugal chiller had an efficacy of 0.48 kW/Ton vs. 0.56, annual power plant emissions would be reduced by:

- Nearly 17 billion pounds of CO$_2$
- Over 64 billion grams of SO$_2$
- Over 27 billion grams of No$_x$

Jim Wolf,
ASHRAE President 2000-01
Influences on HVAC&R Applications

Which is equivalent to:

- Removing over 2 million cars from the road.
- Planting nearly 500 million trees each year.
Building Energy Consumption (U.S.)

- 35% of total energy used in U.S.
- 65% of total electrical consumption
- 48% of energy used in buildings in U.S. is used for comfort cooling & refrigeration.
- 50% of all U.S. homes have A/C.
- 81% of all new homes have central air-conditioning.
Environmental Impact of Buildings in the U.S.

114 million tons of CO$_2$ produced due to energy consumption in U.S. buildings.

67,000 tons of SO$_x$

35,000 tons of NO$_x$
Four Components Critical to the Creation of a Sustainable Building

1. The occupant
2. The design team
3. The building as a system
4. The design process
Four Components Critical to the Creation of a Sustainable Building

1. The occupant
2. The design team
3. The building as a system
4. The design process
Annual Operating Costs

- Energy: $2.00 to $4.00/ft²
Annual Operating Costs

- Energy: $2.00 to $4.00/ft²
- Maintenance: $2.00 to $4.00/ft²
Annual Operating Costs

- Energy: $2.00 to $4.00/ft2
- Maintenance: $2.00 to $4.00/ft^2$
- Owning or Leasing: $10.00 to $40.00/ft^2$
Annual Operating Costs

- Energy: $2.00 to $4.00/ft²
- Maintenance: $2.00 to $4.00/ft²
- Owning or Leasing: $10.00 to $40.00/ft²
- Personnel: $200.00 to $400.00/ft²
Indoor Design Conditions

Table 1: General Design Criteria

<table>
<thead>
<tr>
<th>Category</th>
<th>Inside Design Conditions</th>
<th>Air Movement</th>
<th>Circulation, air changes per hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caféterias and Luncheonettes</td>
<td>Winter: 70 to 74°F, 20 to 30% rh</td>
<td>Summer: 78°F, 50% rh</td>
<td>50 fpm at 6 ft above floor</td>
</tr>
<tr>
<td>Dining and Entertainment Centers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nightclubs and Casinos</td>
<td>Winter: 70 to 74°F, 20 to 30% rh</td>
<td>Summer: 74 to 78°F, 50 to 60% rh</td>
<td>Below 25 fpm at 5 ft above floor</td>
</tr>
<tr>
<td>Kitchens</td>
<td>Winter: 70 to 74°F</td>
<td>Summer: 85 to 88°F</td>
<td>30 to 50 fpm</td>
</tr>
<tr>
<td>Office Buildings</td>
<td>Winter: 70 to 74°F, 20 to 30% rh</td>
<td>Summer: 74 to 78°F, 50 to 60% rh</td>
<td>25 to 45 fpm, 0.75 to 2 cfm/ft²</td>
</tr>
</tbody>
</table>

General Design Conditions

Sailing into the Future
Indoor Design Conditions

Notes to Table 1, General Design Criteria

- **This table shows design criteria differences between various commercial and public buildings. It should not be used as the sole source for design criteria. Each type of data contained here can be determined from the ASHRAE Handbooks and Standards.**

- **Consult governing codes to determine minimum allowable requirements. Outside air requirements may be reduced if high-efficiency adsorption equipment or other odor- or gas-removal equipment is used. See ASHRAE Standard 62 for calculation procedures. Also see Chapter 45 in this volume and Chapter 13 of the 2001 ASHRAE Handbook—Fundamentals.**

- **Refer to Chapter 47.**

- **Food in these areas is often eaten more quickly than in a restaurant; therefore, turnover of diners is much faster. Because diners seldom remain for long periods, they do not require the degree of comfort necessary in restaurants. Thus, it may be possible to lower design criteria standards and still provide reasonably comfortable conditions. Although space conditions of 80°F and 50% rh may be satisfactory for patrons when it is 95°F and 50% rh outside, inside conditions of 78°F and 40% rh are better.**

- **Cafeterias and equipment and facilities are generally air-conditioned. In some nightclubs, low so patrons generally do not stay long.**

- **Equipment and conditions are generally air-conditioned. In some nightclubs, low so patrons usually do not stay long.**

- **Peak kitchen dining areas, although in luxury dining areas, peak kitchen dining areas, although in luxury**

- **Methods for re...**

- **Also includes s...**
Fundamentals of Thermal Comfort
“Thermal Comfort: That condition of mind which expresses satisfaction with the thermal environment.”
Variables Affecting Comfort

- Physical Factors
 - Sound
 - Light
 - Area-Volume
 - Radiation
 - Inspired Gas
 - ATM. Pressure
 - Force Field
 - Air Movement
 - Temp. - R.H.

- Adaptive Factors
 - Activity
 - Clothing
 - Exposure
 - Incentive
 - Ingesta
 - Social
 - Tools
 - Training

- Organismic Factors
 - Drive
 - Phys. Type
 - Body Type
 - Rhythmicity
 - Genetics
 - Age-Sex
Principles of Heat Transfer

- Humans transfer sensible heat by conduction, convection and radiation.

- Humans transfer latent heat by evaporation from the skin (evaporation of perspiration) and through respiration.
Metabolism

- Ranges from approximately 340 Btu/Hr (sedentary) to 3400 Btu/Hr (strenuous).
- Metabolic capacity of trained athlete can reach 20 times their sedentary rate.
- More typical maximum is 12 times sedentary for age 20 and 7 times sedentary for age 70.
Thermal Equilibrium

Is achieved when the metabolic rate equals rate of heat loss less work.*

* Thermal equilibrium does not necessarily mean comfort.
Physiological Responses

- Sweating = Increased Evaporation (little benefit from dripping sweat)
 Note: If heat production is greater than heat loss, first mechanism is vasodilatation which can double or triple heat loss.
- Shivering = Increases Metabolism
Thermal Neutrality

- That condition where no physiological response is needed other than vasomotion to maintain a normal body temperature.

- Normally achieved between $T_o = 73^\circ$F to 81°F for clothed sedentary and 84°F to 88°F unclothed.
Discomfort

- Localized discomfort will overshadow comfort even under conditions of thermal neutrality.

- Causes of localized discomfort include asymmetric radiation, drafts, contact with cold or hot floors, vertical temperature differences.
Discomfort Continued

• Drafts have a disproportionate effect on comfort based on heat transfer.

• Dissatisfaction with the environment grows exponentially as air turbulence increases.
ASHRAE Design Tools
ASHRAE Standard 55

Thermal Environmental Conditions for Human Occupancy
ASHRAE Standard 55

Purpose:

“...to specify the combinations of indoor space environment and personal factors that will produce thermal environmental conditions acceptable to 80% or more occupants within the space.”
Handbook of Fundamentals
Four Components Critical to the Creation of a Sustainable Building

1. The occupant
2. The design team
3. The building as a system
4. The design process
The Design Team

“This requires cooperation . . . among equal partners of architects, engineers, contractors, building users and others.”

Richard Rooley
President, ASHRAE
At a Minimum the Team Must Include

- Building Owner
- Project Manager
- Building Designers
 - HVAC&R Engineer
 - Structural Engineer
 - Architect
- Builder/Contractor
- Equipment Suppliers
- Building Operator
Additional Design Team Members

- Lighting Designer
- Interior Architect
- Landscape Architect
- Lifts and Controls Engineer
- Energy Utilities Provider
- Code Official
- Financial Institution
- Insurer
- Educational Institution
What will the Future Bring?

• “It is probable that within a very few years companies of designers, manufacturers and contractors who operate as they did in the latter part of the 20th century will be looked upon as a living museum”
 Rooley

• “During your professional lifetime you may well serve on a design team of members you will never meet on a project you will never see in a country you never visit.”
 Hayter
Four Components Critical to the Creation of a Sustainable Building

1. The occupant
2. The design team
3. The building as a system
4. The design process
The Building as a System

www.solardecathlon.org
The Building as a System
The Building as a System
The Building as a System
Four Components Critical to the Creation of a Sustainable Building

1. The occupant
2. The design team
3. The building as a system
4. The design process
The Design Process

Critical Initial Steps

• Form an all-inclusive project team
• Agree to a vision for the performance goals
• Agree to the process for making design, construction and occupancy decisions.
• Hold design charrette.
www.highperformancebuildings.gov

DOE supports the development of commercial buildings that are energy efficient, healthy and comfortable places to learn, work, and play.

Search Our Buildings Database
For environmental features and energy use in buildings

High Performance Saves the Bay...
A global model of energy conservation and sustainable building techniques

Near real-time weather data archive is now available.

DOE/NREL is announcing the availability of a (near) real-time weather data archive with...
A Handbook for Planning and Conducting Charrettes for High-Performance Projects

www.highperformancebuildings.gov

/charrette_handbook.html

Gail Lindsey, FAIA
Design Harmony, Inc.

Joel Ann Todd
Environmental Consultant

Sheila J. Hayter
National Renewable Energy Laboratory

NREL
National Renewable Energy Laboratory
1617 Cole Boulevard
Golden, Colorado 80401-3383
NREL is a U.S. Department of Energy Laboratory
Operated by Midwest Research Institute * Battelle * Bechtel
Contract No. DE-AC36-99-GO10337
The Design Process

1. **Pre-design**: Evaluate building functions, size, site & local conditions.

2. **Base-case Building Model**: Meet prescriptive energy and building functional requirements

3. **Parametric Analysis**: Develop sensitivity analysis
The Design Process

4. **Create Design Options**: Consider building geometry, envelope, systems, energy sources, etc.

5. **Simulate Options**: Investigate variants of base-case building using options from previous step including effect of interactions.
The Design Process

6. **Conceptual Design**: Integrate energy features into architectural design. Refine based on simulation. Optimize envelope for energy use.

The Design Process

8. **Bid Documents & Specifications:** Assure that compromises are avoided such as thermal bridging, poor equipment efficiency, code violations. Simulate any modifications.

9. **Construction:** Simulate change orders. Hold regular design reviews. Maintain communications.
The Design Process

LANL Sustainable Design Guide

www.highperformancebuildings.gov

/lanl_sustainable_guide.html
Zion National Park Visitor Center

www.highperformancebuildings.gov/zion/
Welcome to Zion!
Covering 229 square miles in southwestern Utah, Zion National Park was established in 1919 to preserve the area's natural beauty. At that time, the park welcomed 1,000 visitors a year.

Today, with nearly 2.5 million visitors, the National Park Service has worked with the U.S. Department of Energy to minimize impact on Zion's environment while saving energy and reducing costs. The new Visitor Center, opened in May 2000, was designed...
Zion National Park Visitor Center – The Conditions

• Hot & Dry Climate (100°F daytime high)
• Night temperatures in wider areas of canyon will drop to 59°F
• Slot canyon (2000’ deep)
• Canyon provides significant shading
• Wet canyon walls provide evaporative cooling
Zion National Park Visitor Center – Design Features

Goal – Use 70% less energy than ASHRAE Standard 90.
Zion National Park Visitor Center
– Downdraft Cool Towers
Zion National Park Visitor Center – 7.2-kW PV System

PV provides 30% of daytime electrical load & 100% of basic functional requirements.
Zion National Park Visitor Center - Construction

- Construction costs 30% less than planned for conventional building.
Zion National Park Visitor Center – Lessons Learned

- Cooltowers with natural ventilation work best when serving open spaces. Offices with closed doors tend to overheat.
- White-washed ceiling less reflective than original design.
- No task lighting in original plan. Added later.
Conclusion

So what is your vision for a sustainable future?

or
Conclusion

“Vision without action is merely a dream and action without vision just passes the time, but vision with action can change the world.”

Joel Barker
THANK YOU

This concludes the ASHRAE & AIA
Continuing Education Systems Program

Please go to the website for the course evaluation
www.ashraemadison.org/crc2007

Questions or Comments??

Richard Hayter
Kansas State University
785.532.5590
rhayter@ksu.edu
http://www.ksu.edu