# White Roofs in Northern Climates

ASHRAE Tech. Paper: Simulated Influence of the Roof Reflectance on the Building Energy Balance in Two Northern Cities

#### **Presenter: Daniel Dettmers**

HVAC&R Center & IRC, U.W. Madison

Authors:

Sebastian Freund, Ph.D., Helmut-Schmidt-University Daniel Dettmers, HVAC&R Center, U.W.-Madison Douglas Reindl, Ph.D., HVAC&R Center, U.W.-Madison



COLLEGE OF ENGINEERING UNIVERSITY OF WISCONSIN-MADISON ASHRAE is a Registered Provider with the **American Institute of Architects Continuing** Education Systems. Credit earned on completion of this program will be reported to CES Records for AIA members.

This program is registered with the AIA/CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product. Questions related to specific materials, FDUCA SNIUN methods, and services will be addressed at the conclusion of this presentation.

## Learning Objectives

- Identify and evaluate applications where a white roof is effective and ineffective
- 2) Recognize common misconceptions for the use of white roof technology
- 3) Understand the technology and savings benefits of white roofs in northern climates

## Definition

 Here, we define a "white roof" is one that is highly reflective of incident solar radiation

#### EPA's requirements for a "Reflective Roof"

| Equipment | Specification                                                                                                                           |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Roofing   | •Low Slope roofs must have an initial solar<br>reflectance of $> = 0.65$ . After 3 years, the solar<br>reflectance must be $> = 0.50$ . |
|           | •Steep Slope roots must have an initial solar reflectance of $> = 0.25$ . After 3 years, the solar reflectance must be $> = 0.15$ .     |

Source: www.energystar.gov/index.cfm?c=roof\_prods.pr\_crit\_roof\_products

## Why Northern Climates?

- Minnesota utility offered a rebate for installing high albedo (white) roof on "big box" retail buildings
  - Primarily targeted at roof replacements of poorly insulated buildings

N

E

N

S

 $\prod$ 

- Rebate was challenged due to climate
  - MANY more heating hours than cooling hours

## Why Northern Climates?

#### Is there monetary savings?

- Is electric (A/C) savings being achieved at the expense of extra gas (heating) use?
- Is heat/cooling season balance to skewed?
- Or does reflective nature of snow cover negate the differences between white and black roofs?



## **Previous Work**

- *Cool Roofs Save Energy*, Hashem Akbari, ASHRAE Transactions 1998.
- Measured Performance of a Reflective Roofing System in a Florida Commercial Building, Danny S. Parker, John R. Sherwin, Jeffrey K. Sonne, ASHRAE Transactions 1998.
- High-Albedo Roof Coatings—Impact on Energy Consumption, James M. Akridge, ASHRAE Transactions 1998.
- Measured and Simulated Performance of Reflective Roofing Systems in Residential Buildings, D. S. Parker et al, ASHRAE Transactions 1998.



## **Previous Work**

*Measured and Simulated Performance of Reflective Roofing Systems in Residential Buildings*, D. S. Parker et al, ASHRAE Transactions 1998.

- DOE-2 simulations said residential white roof would have negative impacts in northern climates
- Calculations for Reflective Roofs in Support of Standard 90.1, Hashem Akbari et al., ASHRAE Transactions 1998.
  - Again, DOE-2.1E simulations said roofs in cold climates should not be reflective, but assumptions made from warm weather data

#### Cool Roofs Save Energy, H. Akbari, ASHRAE Transactions 1998.

 DOE-2 based simulations may underestimate the effect of roof reflectance on energy usage

- Architectural/ Envelope Characteristics
  - Building type: 1 story commercial retail "big box"
  - Location: Minneapolis
  - Floor area: 100,000 ft<sup>2</sup>
  - Height: 25 ft
  - Length: 316.2 ft
  - Width: 316.2 ft
  - Windows: 400 ft<sup>2</sup> each wall, facing N, S, E and W
  - Window Type: Standard clear double glazed
  - Wall insulation level: R-11
  - Floor construction: Concrete slab on grade

- **Operation and Use** 
  - Occupied periods: 7AM to 10PM all days
  - Heating set point: 72°F
  - Cooling set point: 76°F and max of 60% RH
- Internal Load Characteristics
  - Light: 2.5 w/ft<sup>2</sup> Occupied & 0.50 W/ft<sup>2</sup> unoccupied
  - Light Schedule: 100% occupied time, 20% unoccupied time
  - People: Maximum 400, varies throughout the day and week vs. weekend
  - Activity level: ISO 7730-05 (315/325 Btu/h sensible/latent), only during occupied
  - Equipment load/schedule: 0.3 W/ft²/24 x 7

- Mechanical System Characteristics
  - Cooling Equipment: DX Rooftop
  - Cooling EER: 9.0
  - Heating system 80% Rooftop gas fired unit
  - Air handler type: Constant volume
  - Supply CFM/sf: 1.5 cfm/ft<sup>2</sup>
  - Outside air: 0.2 cfm/ft<sup>2</sup>
  - Supply/return fan power: 70 kW
  - Pressure drop: 1 inH<sub>2</sub>O (249 Pa) for 150 kcfm,
  - Fan efficiency: 50%
  - Infiltration: 0

 Electric Rates - June through September \$0.031/kWh • \$6.61/kW October through May \$0.031/kWh • \$9.26/kW Natural Gas Rate - \$0.481/therm



- Roof Orientation
  - South sloped roofs typically receive higher radiation intensity and less snow coverage than flat.
  - Since the building was a big box retailer, we chose a flat roof with the front facing south.
- This parameter did not vary in the study

#### Sunshine/Snow cover

- Increased Sunshine = Increased heat load
- Summer
  - Reflective roof reduces effects of sunshine and saves A/C energy.
- Winter
  - Reflective roof reduces effects of sunshine and increases heating load.
  - Less hours of sunshine in winter
  - Snow cover negates the effect of the roof since all roofs become white.

#### 8,760 simulation including sun, wind and cloud

With snow cover vs. no snow cover

#### Roof Construction and Insulation

- "R-24" is sheet metal roof with an EPDM membrane insulation material with R-value = 24 hr-ft<sup>2</sup>-F/Btu plus variable heat transfer coefficient
- Average R-value = 3.28 + insulation R-value
- Roof insulation levels
  - Insulation levels of RO, R4, R8, R16, R24
  - R0 indicates no insulation.
- Roof surface reflectance
  - Black = 0.06 vs. White = 0.65 0.65
  - 0.65 is Energy Star minimum
  - 0.80 is common installation value

0.06

- Internal Gains & Heat Load
  - During cooling season, reduced roof surface temperature results in lower cooling load.
    - Reduces payback of white roof
  - Cooling season extended by:
    - Warmer climate
    - Higher internal loads
- Economizer vs.
  No economizer



## Heat Transfer Coefficients

- Outside convective heat transfer coefficient (h<sub>w</sub>) based on wind speed.
  - Free convection coefficient = 5 W/m<sup>2</sup>-K
    Used at low wind speed
  - h<sub>w</sub> = max[5, 2.5 + 1.9v]
    - v = wind speed [m/s]
- h<sub>w</sub> is recalculated every hour of the simulation



## Heat Transfer Coefficients

- Inside convective heat transfer coefficient h<sub>in</sub> based on air change per hour (ACH) and ∆T between inside of roof and room.
  - For *cooling* season (warm roof):
    - $h_{in} = 0.49 \text{ ACH}^{0.8} + 0.525 (T_{roof} T_{room})^{0.2446}$
  - For *heating* season (cool roof):
    - $h_{in} = 0.49 \text{ ACH}^{0.8} + 4 0.0017 \text{ T}_{roof} + 0.0032 \text{ T}_{roof}^2 0.0005 \text{ T}_{roof}^3$
- h<sub>in</sub> is also recalculated every hour of the simulation.

## Heat Transfer Coefficients

 Radiative heat transfer also taken into account using empirical formula from Berdahl and Martin [1984]

Simulated Roof Surface Temperature R8 insulation



# **Roof Temperatures**

| R-value of<br>Roof Insulation |    | R4  | <b>R8</b> | R16 | R24 |
|-------------------------------|----|-----|-----------|-----|-----|
| Black, Max.                   | °F | 192 | 192       | 195 | 195 |
| White, Max.                   | 오片 | 122 | 122       | 123 | 122 |
| Black, Ave.                   | °F | 61  | 61        | 62  | 67  |
| White, Ave.                   | 오片 | 50  | 50        | 51  | 56  |

## **Snow Cover**

- Simulated snow cover on roof
  - Start with snow height data from TMY2
  - Calculate hourly melting rate due to heat flux through the roof
  - Sets roof surface temp to 32°F and high heat transfer coefficient if snow present
     Negligible heat transfer through snow
    - Snow melts from bottom up



|                                                  | Summary of the Annual Cooling Simulation Results |                            |         |         |        |        |  |
|--------------------------------------------------|--------------------------------------------------|----------------------------|---------|---------|--------|--------|--|
| R-val                                            | ue of roof insulation                            | R-0                        | R-4     | R-8     | R-16   | R-24   |  |
| Buildi                                           | ng Cooling Load [Btu/ft                          | <sup>2</sup> ]             | -       | -       | -      | -      |  |
|                                                  | Black                                            | 25,701                     | 25,663  | 26,194  | 26,646 | 27,586 |  |
|                                                  | White                                            | 19,037                     | 21,483  | 23,134  | 24,703 | 26,084 |  |
|                                                  | Difference                                       | 6,665                      | 4,181   | 3,060   | 1,943  | 1,502  |  |
| Cooling Consumption [kWh/1,000 ft <sup>2</sup> ] |                                                  |                            |         |         |        |        |  |
|                                                  | Black                                            | 2,545                      | 2,541   | 2,593   | 2,638  | 2,731  |  |
|                                                  | White                                            | 1,885                      | 2,127   | 2,291   | 2,446  | 2,583  |  |
|                                                  | Difference                                       | 660                        | 414     | 303     | 192    | 149    |  |
| Peak                                             | Cooling Power [kW/1,00                           | 00 ft <sup>2</sup> ]       | -       |         | -      | -      |  |
|                                                  | Black                                            | 3.06                       | 2.71    | 2.64    | 2.44   | 2.42   |  |
|                                                  | White                                            | 2.49                       | 2.42    | 2.43    | 2.35   | 2.35   |  |
|                                                  | Difference                                       | 0.57                       | 0.29    | 0.21    | 0.09   | 0.06   |  |
|                                                  | Difference                                       | 19%                        | 11%     | 8%      | 4%     | 3%     |  |
| Coolir                                           | ng Cost [\$/1,000 ft <sup>2</sup> ]              |                            |         |         |        |        |  |
|                                                  | Black                                            | 79                         | 79      | 80      | 82     | 85     |  |
|                                                  | White                                            | 58                         | 66      | 71      | 76     | 80     |  |
|                                                  | Difference                                       | 20                         | 13      | 9       | 6      | 5      |  |
|                                                  | שוופופוונפ                                       | 26%                        | 16%     | 12%     | 7%     | 5%     |  |
| Annua                                            | al Compressor Demand [                           | \$/1,000 ft <sup>2</sup> ] |         |         |        |        |  |
|                                                  | Cost Difference                                  | \$33.52                    | \$17.55 | \$11.87 | \$5.82 | \$4.28 |  |

#### **Summary of the Annual Heating Simulation Results**

| R-val | ue of roof insulation             | R-0                        | R-4    | R-8    | R-16  | R-24  |
|-------|-----------------------------------|----------------------------|--------|--------|-------|-------|
| Build | ing Heating Load [Btu/            | ′ft²]                      |        |        |       |       |
|       | Black                             | 24,818                     | 15,589 | 11,872 | 9,071 | 7,645 |
|       | White                             | 27,690                     | 17,052 | 12,665 | 9,420 | 7,855 |
|       | Difference                        | -2,871                     | -1,463 | -793   | -349  | -210  |
| Gas C | Consumption [Therm/1              | 000ft <sup>2</sup> ]       |        |        |       |       |
|       | Black                             | 310                        | 195    | 148    | 113   | 96    |
|       | White                             | 346                        | 213    | 158    | 118   | 98    |
|       | Difference                        | -35.9                      | -18.3  | -9.9   | -4.4  | -2.6  |
| Peak  | Gas Consumption [The              | rm/h-1000ft <sup>2</sup> ] |        |        |       |       |
|       |                                   | 0.31                       | 0.27   | 0.24   | 0.21  | 0.18  |
| Heati | ng Cost [\$/1000ft <sup>2</sup> ] |                            |        |        |       |       |
|       | Black                             | 149                        | 94     | 71     | 55    | 46    |
|       | White                             | 166                        | 103    | 76     | 57    | 47    |
|       | Difference                        | -17.3                      | -8.80  | -4.77  | -2.10 | -1.26 |
|       | Difference                        | -12%                       | -9%    | -7%    | -4%   | -3%   |
|       |                                   |                            |        |        |       |       |

# **Summary of Simulation Results**

| <b>R-value of roof insulation</b> |                           | RO       | <b>R4</b>      | <b>R</b> 8 | R16     | R24     |
|-----------------------------------|---------------------------|----------|----------------|------------|---------|---------|
| Overall R-value of roof           |                           | R3.50    | R7.82          | R11.82     | R19.82  | R27.82  |
| Heating<br>Savings                | Load, Btu/ft <sup>2</sup> | -2,871   | -1,463         | -793       | -349    | -210    |
|                                   | \$/1,000ft <sup>2</sup>   | -\$17.30 | -\$8.80        | -\$4.77    | -\$2.10 | -\$1.26 |
| Cooling<br>Savings                | Load, Btu/ft <sup>2</sup> | 6,665    | 4,181          | 3,060      | 1,943   | 1,502   |
|                                   | \$/1,000ft <sup>2</sup>   | \$53.98  | \$30.39        | \$21.26    | \$11.78 | \$8.89  |
| Total Savings                     | Load, Btu/ft <sup>2</sup> | 3,793    | 2,718          | 2,266      | 1,594   | 1,293   |
|                                   | \$/1,000ft <sup>2</sup>   | \$36.71  | <b>\$21.59</b> | \$16.49    | \$9.68  | \$7.63  |

Summary of the heating and cooling savings per year for a white roof compared to a black roof. White roof values subtracted from the black roof values. Economizer is used and roof is covered with snow at appropriate times.

## Influence of State

 High insulation increases negating effect of snow
 Even without snow, energy cost savings

are 22% lower for R4 and 26% for R24

| Hours of Snowcover                            | 615    | 1,511  |
|-----------------------------------------------|--------|--------|
| Building Heating Loads [Btu/ft <sup>2</sup> ] |        |        |
| Black, with snow                              | 15,588 | 7,578  |
| Black, without snow                           | 16,054 | 8,115  |
| Difference                                    | 2.9%   | 6.6%   |
| White, with snow                              | 17,052 | 7,798  |
| White, without snow                           | 17,859 | 8,610  |
| Difference                                    | 4.5%   | 9.4%   |
| Building Cooling Loads [Btu/ft <sup>2</sup> ] |        |        |
| Black, with snow                              | 33,988 | 38,974 |
| Black, without snow                           | 34,011 | 38,994 |
| Difference                                    | 0.1%   | 0.1%   |
| White, with snow                              | 28,149 | 36,690 |
| White, without snow                           | 28,151 | 36,660 |
| Difference                                    | 0.0%   | -0.1%  |

## **Influence of Energy Prices**



Break-Even Energy Costs

#### **Influence of Increased Insulation**

#### Savings for Incremental Increases in Roof Insulation. Roof is a black roof, with snow cover and economizer in use.

| Incremental ins<br>increase | sulation                  | R4 to R8      | R8 to R16   | R16 to    | R24       | R4 to R24 |
|-----------------------------|---------------------------|---------------|-------------|-----------|-----------|-----------|
| Heating                     | Load, Btu/ft <sup>2</sup> | 3,717         | 2,801       | 1,42      | 26        | 7,944     |
| Savings                     | \$/1000ft <sup>2</sup>    | \$22.35       | \$16.84     | \$8.!     | 57        | \$47.76   |
| Cooling                     | Load, Btu/ft <sup>2</sup> | -531          | -452        | -94       | 0         | -1,923    |
| Savings                     | \$/1000ft <sup>2</sup>    | -\$1.63       | -\$1.39     | -\$2.     | 89        | -\$5.90   |
| Total Covings               | Load, Btu/ft <sup>2</sup> | 3,187         | 2,348       | 48        | 6         | 6,021     |
| Total Savings               | \$/1000ft <sup>2</sup>    | \$20.72       | \$15.45     | \$5.      | <b>69</b> | \$41.86   |
|                             | Summa                     | ary of Simula | ation Resul | ts:       |           |           |
| R-value of ro               | of insulation             | RO            | R4          | <b>R8</b> | R16       | 6 R24     |
| Total Savings               | Load, Btu/ft <sup>2</sup> | 3,793         | 2,718       | 2,266     | 1,59      | 4 1,293   |
| for Installing              |                           |               |             |           |           |           |

\$36.71

\$21.59

\$16.49

**\$9.68** 

\$7.63

\$/1,000ft<sup>2</sup>

White Roof

## Influence of Economizer

#### Savings for Installing White Roof without an Economizer. With snow cover but NO economizer in use.

| Roof insulation    |                        | R4      | <b>R</b> 8 | R16            | R24     |
|--------------------|------------------------|---------|------------|----------------|---------|
| Heating<br>Savings | Btu/ft <sup>2</sup>    | -1,464  | -803       | -353           | -220    |
|                    | \$/1000ft <sup>2</sup> | -\$8.80 | -\$4.83    | -\$2.12        | -\$1.32 |
| Cooling<br>Savings | Btu/ft <sup>2</sup>    | 5,839   | 4,363      | 2,889          | 2,283   |
|                    | \$/1000ft <sup>2</sup> | \$36.13 | \$26.91    | \$15.08        | \$11.36 |
| Total Savings      | Btu/ft <sup>2</sup>    | 4,375   | 3,560      | 2,537          | 2,064   |
|                    | \$/1000ft <sup>2</sup> | \$27.33 | \$22.08    | <b>\$12.95</b> | \$10.04 |

#### Summary of Simulation Results: Just the Total

| <b>R-value of roof insulation</b> |                           | RO      | R4             | <b>R</b> 8 | R16           | <b>R24</b> |   |
|-----------------------------------|---------------------------|---------|----------------|------------|---------------|------------|---|
| Total Savings                     | Load, Btu/ft <sup>2</sup> | 3,793   | 2,718          | 2,266      | 1,594         | 1,293      |   |
| for Installing<br>White Roof      | \$/1,000ft <sup>2</sup>   | \$36.71 | <b>\$21.59</b> | \$16.49    | <b>\$9.68</b> | \$7.63     | 2 |

## Denver, CO

#### Savings Summary for Installing White Roof In Denver, CO

| R              | R4         | R24                        |        |       |
|----------------|------------|----------------------------|--------|-------|
| Heating Energy | Black      | therm/1000 ft <sup>2</sup> | 88     | 24    |
|                | VVhite     | therm/1000 ft <sup>2</sup> | 102    | 25    |
|                | Difference | %                          | -15.2% | -4.3% |
|                | Difference | therm/1000 ft <sup>2</sup> | -13.4  | -1.0  |
|                | Black      | kWh/1000 ft <sup>2</sup>   | 3539   | 4162  |
| Cooling Energy | VVhite     | kWh/ft <sup>2</sup>        | 2736   | 3854  |
| Cooling Energy | Difference | %                          | 22.7%  | 7.4%  |
|                | Difference | kWh/1000 ft <sup>2</sup>   | 803    | 307   |
| Energy Cost    | Difference | \$/1000 ft <sup>2</sup>    | 18.42  | 9.04  |
| Demand Cost    | Difference | \$/1000 ft <sup>2</sup>    | 29.32  | 7.05  |
| Total costs    | Difference | \$/1000 ft <sup>2</sup>    | 47.74  | 16.09 |

# Summary

 Installation of high albedo (white) roofs saves energy and money in northern U.S. climates.



## **THANK YOU** This concludes the ASHRAE & AIA Continuing Education Systems Program

Please the website www.ashraemadison.org/crc2007

**Questions or Comments??** 

Daniel Dettmers HVAC&R Center & Industrial Refrigeration Consortium U.W. Madison

608-262-8221

www.irc.wisc.edu